下一代串行數(shù)據(jù)標(biāo)準(zhǔn)采用的高速率已經(jīng)進(jìn)入到微波領(lǐng)域。比如,即將到來(lái)的SuperSpeed USB(USB 3.0)通過(guò)雙絞線(xiàn)對(duì)線(xiàn)纜傳輸速的率就達(dá)到了5Gb/s。通過(guò)連接器和線(xiàn)纜傳輸如此高的速率必須考慮通道的不連續(xù)性引起的失真。為了將失真程度保持在一個(gè)可控的水平,標(biāo)準(zhǔn)規(guī)定了線(xiàn)纜和連接器對(duì)的阻抗和回波損耗。最新的測(cè)量使用S參數(shù)S11表征而且必須歸一化到線(xiàn)纜的90歐姆差分阻抗。
當(dāng)測(cè)量USB 3.0通道的S參數(shù)時(shí),可選的儀器是時(shí)域反射計(jì)或TDR。TDR系統(tǒng)通常往待測(cè)器件注入一個(gè)階躍電壓信號(hào)然后測(cè)量是時(shí)間函數(shù)的反射電壓。差分測(cè)量通過(guò)產(chǎn)生極性相反可相對(duì)定時(shí)的階躍電壓對(duì)實(shí)現(xiàn)。這篇文章中談到的都是差分信號(hào)。
反射電壓與發(fā)射器和待測(cè)器件之間的阻抗失配成比例,關(guān)系如下式:
Z0 是源阻抗,ZL(t)是待測(cè)器件的阻抗,r(t)是反射系數(shù),Vr(t)/Vi(t)是入射和發(fā)射電壓的比率。式(1)假設(shè)到待測(cè)器件的源,線(xiàn)纜和連接器都是匹配的,但事實(shí)上這種情況很少見(jiàn)。為了補(bǔ)償線(xiàn)纜和連接器的不理想,參考平面校正(基線(xiàn)校正)通常進(jìn)行開(kāi)路,短路,負(fù)載校準(zhǔn)。調(diào)整式 (1)可以得到待測(cè)器件的阻抗和時(shí)間(或距離)的函數(shù),所以可以使用校準(zhǔn)過(guò)的TDR做阻抗測(cè)量。
圖1展示了USB 3.0 帶有連接器線(xiàn)纜的的阻抗曲線(xiàn)。曲線(xiàn)表明了隨著TDR 階躍信號(hào)在線(xiàn)纜中的行進(jìn)阻抗變化是時(shí)間的函數(shù)。注意軌跡兩頭的阻抗變化,那是由于連接器引起的,當(dāng)使用上升時(shí)間100ps (階躍信號(hào))測(cè)試時(shí)連接器的阻抗規(guī)定是90+/- 7歐。TDR的上升時(shí)間非常重要,因?yàn)樽杩棺兓蚑DR階躍信號(hào)的上升時(shí)間成反比,而規(guī)范規(guī)定的USB 3.0信號(hào)的上升時(shí)間是100 ps,測(cè)量中匹配這個(gè)上升時(shí)間將給出信號(hào)“看到的”阻抗。
Figure 1: Differential impedance vs. time measurement for USB3.0 cable and mated connectors
圖1:USB 3.0帶有連接器線(xiàn)纜的 差分阻抗 vs 時(shí)間 測(cè)量
回波損耗或S11 是頻域的測(cè)量和反射系數(shù)有關(guān)。歸一化(通過(guò)反射平面校準(zhǔn) 基線(xiàn)校正)反射系數(shù)的傅里葉變換給出了回波損耗是頻率的函數(shù)。圖2給出了USB 3.0線(xiàn)纜和連接器測(cè)量的結(jié)果。圖中的橫軸表示2GHz/div,范圍是0~20GHz,縱軸表示10dB/div?;夭〒p耗在2GHz大約是15dB,但隨著頻率的增加開(kāi)始變得越來(lái)越小。精細(xì)的空值間隔是由線(xiàn)纜末端的連接器引起的,較大的空值間隔是由于連接器內(nèi)部的阻抗結(jié)構(gòu)決定的。
Figure 2: Differential return loss for USB3.0 cable with mated connectors
圖2: USB 3.0 帶有連接器線(xiàn)纜的差分回波損耗
回波損耗可以參考圖1中線(xiàn)纜和連接器阻抗是90歐而TDR系統(tǒng)差分阻抗是100歐,由于USB 3.0發(fā)射機(jī)阻抗是90歐,這個(gè)不匹配人為地減少了回波損耗。為了正確的表達(dá)回波損耗,將阻抗轉(zhuǎn)化為測(cè)試到的S11 是非常必要的,轉(zhuǎn)換關(guān)系由下式給出。
and
(2)
轉(zhuǎn)化可以分為兩步。首先,用特征阻抗是100歐姆的測(cè)試系統(tǒng)得出的復(fù)數(shù)S參數(shù)計(jì)算出復(fù)數(shù)的負(fù)載阻抗。其次,用新的90歐姆參考阻抗計(jì)算出負(fù)載阻抗的S參數(shù)?;夭〒p耗是頻率的函數(shù),所以可以計(jì)算出每個(gè)頻點(diǎn)的S參數(shù)。
舉個(gè)例子,用100歐姆阻抗表征的復(fù)合回波損耗S11 = 0.53 - 0.12J 轉(zhuǎn)換到90歐姆的如下:
式2 用來(lái)將圖2中測(cè)到的插損 轉(zhuǎn)換到90歐姆差分阻抗。圖3中的兩個(gè)曲線(xiàn)給出了100歐姆和90歐姆特征阻抗的的回波損耗。
Figure 3: Return loss measured with 100 ohm reference (dotted line) and 90 ohm (solid line) reference
圖3:100 歐姆(虛線(xiàn))和90歐姆參考(實(shí)線(xiàn))的回波損耗
USB 3.0 線(xiàn)纜和連接器的差分阻抗可以使用校正的TDR系統(tǒng)測(cè)量插損而得出。通過(guò)對(duì)連接到待測(cè)器件的參考平面(基線(xiàn)校正)運(yùn)行開(kāi)路,短路,負(fù)載進(jìn)行校正。通過(guò)簡(jiǎn)單的轉(zhuǎn)換測(cè)試系統(tǒng)和待測(cè)器件之間的不同阻抗進(jìn)行插損補(bǔ)償。
References
參考:
[1] “Time Domain Spectrum Analyzer and "S" Parameter Vector Network Analyzer”, James R. Andrews, Picosecond Pulse Labs application note AN-16a, November 2004
[2] “converting s-parameters from 50-ohm to 75-ohm Impedance”, Dallas Semiconductor/Maxxim application note November 21, 2003
USB 3.0線(xiàn)纜和連接器的阻抗和插損測(cè)試
發(fā)布時(shí)間:2009-09-24 來(lái)源:美國(guó)力科
- IOTE 2025深圳物聯(lián)網(wǎng)展:七大科技領(lǐng)域融合,重塑AIoT產(chǎn)業(yè)生態(tài)
- 全局快門(mén)CMOS傳感器選型指南:從分辨率到HDR的終極考量
- DigiKey B站頻道火出圈:粉絲破10萬(wàn)大關(guān),好禮送不停
- ADAS減負(fù)神器:TDK推出全球首款PoC專(zhuān)用一體式電感器
- 國(guó)產(chǎn)5G模組里程碑,移遠(yuǎn)通信AI模組SG530C-CN實(shí)現(xiàn)8TOPS算力+全鏈自主化
- 專(zhuān)為高頻苛刻環(huán)境設(shè)計(jì)!Vishay新款CHA系列0402車(chē)規(guī)薄膜電阻量產(chǎn)上市
- 散熱效率翻倍!Coherent金剛石-碳化硅復(fù)合材料讓芯片能耗砍半
- 1700V耐壓破局!Wolfspeed MOSFET重塑輔助電源三大矛盾
- 重磅公告!意法半導(dǎo)體2025年Q2業(yè)績(jī)發(fā)布及電話(huà)會(huì)議時(shí)間確定
- 超級(jí)電容技術(shù)全景解析:從物理原理到選型實(shí)踐,解鎖高功率儲(chǔ)能新紀(jì)元
- MHz級(jí)電流測(cè)量突破:分流電阻電感補(bǔ)償技術(shù)解密
- 告別電壓應(yīng)力難題:有源鉗位助力PSFB效率突破
- 車(chē)規(guī)與基于V2X的車(chē)輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車(chē)安全隔離的新挑戰(zhàn)
- 汽車(chē)模塊拋負(fù)載的解決方案
- 車(chē)用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall